On the Determinants and Inverses of Skew Circulant and Skew Left Circulant Matrices with Fibonacci and Lucas Numbers
نویسندگان
چکیده
Abstract: In this paper, we consider the skew circulant and skew left circulant matrices with the Fibonacci and Lucas numbers. Firstly, we discuss the invertibility of the skew circulant matrix and present the determinant and the inverse matrix by constructing the transformation matrices. Furthermore, the invertibility of the skew left circulant matrices are also discussed. We obtain the determinants and the inverse matrices of the skew left circulant matrices by utilizing the relation between skew left circulant matrices and skew circulant matrix, respectively.
منابع مشابه
Exact Determinants of the RFPrLrR Circulant Involving Jacobsthal, Jacobsthal-Lucas, Perrin and Padovan Numbers
Circulant matrix family occurs in various fields, applied in image processing, communications, signal processing, encoding and preconditioner. Meanwhile, the circulant matrices [1, 2] have been extended in many directions recently. The f(x)-circulant matrix is another natural extension of the research category, please refer to [3, 11]. Recently, some authors researched the circulant type matric...
متن کاملThe Gaussian Fibonacci Skew-Circulant Type Matrices
Abstract: Let be a Gaussian Fibonacci skew-circulant matrix, and be a Gaussian Fibonacci left skew-circulant matrix, and both of the first rows are , where is the th Gaussian Fibonacci number, and is a nonnegative integer. In this paper, by constructing the transformation matrices, the explicit determinants of and are expressed. Moreover, we discuss the singularities of these matrices and the i...
متن کاملSpectral norms of circulant-type matrices involving some well-known numbers
In this paper, we investigate spectral norms for circulant-type matrices, including circulant, skewcirculant and g-circulant matrices. The entries are product of binomial coefficients with Fibonacci numbers and Lucas numbers, respectively. We obtain identity estimations for these spectral norms. Employing these approaches, we list some numerical tests to verify our results.
متن کاملOn the Norms of Circulant Matrices with the (k,h)-Fibonacci and (k,h)-Lucas Numbers
In this paper, we give upper and lower bounds for the spectral norms of circulant matrices A n = Circ(F n−1) and B n = Circ(L (k,h) n and L (k,h) n are the (k, h)-Fibonacci and (k, h)-Lucas numbers, then we obtain some bounds for the spectral norms of Kronecker and Hadamard products of these matrices.
متن کاملOn the Spectral Norms of r-Circulant Matrices with the k-Fibonacci and k-Lucas Numbers
Abstract In this paper, we consider the k -Fibonacci and k -Lucas sequences {Fk,n}n∈N and {Lk,n}n∈N . Let A = Cr(Fk,0, Fk,1, · · · , Fk,n−1) and B = Cr(Lk,0, Lk,1, · · · , Lk,n−1) be r -circulant matrices. Afterwards, we give upper and lower bounds for the spectral norms of matrices A and B. In addition, we obtain some bounds for the spectral norms of Hadamard and Kronecker products of these ma...
متن کامل